Hyponormal matrices and semidefinite invariant subspaces in indefinite inner products

نویسندگان

  • Christian Mehl
  • André C. M. Ran
  • Leiba Rodman
چکیده

It is shown that, for any given polynomially normal matrix with respect to an indefinite inner product, a nonnegative (with respect to the indefinite inner product) invariant subspace always admits an extension to an invariant maximal nonnegative subspace. Such an extension property is known to hold true for general normal matrices if the nonnegative invariant subspace is actually neutral. An example is constructed showing that the extension property does not generally holds true for normal matrices, even when the nonnegative invariant subspace is assumed to be positive. On the other hand, it is proved that the extension property holds true for hyponormal (with respect to the indefinite inner product) matrices under certain additional hypotheses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ela Hyponormal Matrices and Semidefinite Invariant Subspaces in Indefinite Inner Products

It is shown that, for any given polynomially normal matrix with respect to an indefinite inner product, a nonnegative (with respect to the indefinite inner product) invariant subspace always admits an extension to an invariant maximal nonnegative subspace. Such an extension property is known to hold true for general normal matrices if the nonnegative invariant subspace is actually neutral. An e...

متن کامل

Ela Real and Complex Invariant Subspaces for Matrices Which Are H-positive Real in an Indefinite Inner Product Space

In this paper, the equivalence of the existence of unique real and complex A-invariant semidefinite subspaces for real H-positive real matrices are shown.

متن کامل

Essential decomposition of polynomially normal matrices in real indefinite inner product spaces

Polynomially normal matrices in real indefinite inner product spaces are studied, i.e., matrices whose adjoint with respect to the indefinite inner product is a polynomial in the matrix. The set of these matrices is a subset of indefinite inner product normal matrices that contains all selfadjoint, skew-adjoint, and unitary matrices, but that is small enough such that all elements can be comple...

متن کامل

Ela Essential Decomposition of Polynomially Normal Matrices in Real Indefinite Inner Product Spaces∗

Polynomially normal matrices in real indefinite inner product spaces are studied, i.e., matrices whose adjoint with respect to the indefinite inner product is a polynomial in the matrix. The set of these matrices is a subset of indefinite inner product normal matrices that contains all selfadjoint, skew-adjoint, and unitary matrices, but that is small enough such that all elements can be comple...

متن کامل

Normal Matrices in Degenerate Indefinite Inner Product Spaces

Complex matrices that are structured with respect to a possibly degenerate indefinite inner product are studied. Based on the theory of linear relations, the notion of an adjoint is introduced: the adjoint of a matrix is defined as a linear relation which is a matrix if and only if the inner product is nondegenerate. This notion is then used to give alternative definitions of selfadjoint and un...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004