Hyponormal matrices and semidefinite invariant subspaces in indefinite inner products
نویسندگان
چکیده
It is shown that, for any given polynomially normal matrix with respect to an indefinite inner product, a nonnegative (with respect to the indefinite inner product) invariant subspace always admits an extension to an invariant maximal nonnegative subspace. Such an extension property is known to hold true for general normal matrices if the nonnegative invariant subspace is actually neutral. An example is constructed showing that the extension property does not generally holds true for normal matrices, even when the nonnegative invariant subspace is assumed to be positive. On the other hand, it is proved that the extension property holds true for hyponormal (with respect to the indefinite inner product) matrices under certain additional hypotheses.
منابع مشابه
Ela Hyponormal Matrices and Semidefinite Invariant Subspaces in Indefinite Inner Products
It is shown that, for any given polynomially normal matrix with respect to an indefinite inner product, a nonnegative (with respect to the indefinite inner product) invariant subspace always admits an extension to an invariant maximal nonnegative subspace. Such an extension property is known to hold true for general normal matrices if the nonnegative invariant subspace is actually neutral. An e...
متن کاملEla Real and Complex Invariant Subspaces for Matrices Which Are H-positive Real in an Indefinite Inner Product Space
In this paper, the equivalence of the existence of unique real and complex A-invariant semidefinite subspaces for real H-positive real matrices are shown.
متن کاملEssential decomposition of polynomially normal matrices in real indefinite inner product spaces
Polynomially normal matrices in real indefinite inner product spaces are studied, i.e., matrices whose adjoint with respect to the indefinite inner product is a polynomial in the matrix. The set of these matrices is a subset of indefinite inner product normal matrices that contains all selfadjoint, skew-adjoint, and unitary matrices, but that is small enough such that all elements can be comple...
متن کاملEla Essential Decomposition of Polynomially Normal Matrices in Real Indefinite Inner Product Spaces∗
Polynomially normal matrices in real indefinite inner product spaces are studied, i.e., matrices whose adjoint with respect to the indefinite inner product is a polynomial in the matrix. The set of these matrices is a subset of indefinite inner product normal matrices that contains all selfadjoint, skew-adjoint, and unitary matrices, but that is small enough such that all elements can be comple...
متن کاملNormal Matrices in Degenerate Indefinite Inner Product Spaces
Complex matrices that are structured with respect to a possibly degenerate indefinite inner product are studied. Based on the theory of linear relations, the notion of an adjoint is introduced: the adjoint of a matrix is defined as a linear relation which is a matrix if and only if the inner product is nondegenerate. This notion is then used to give alternative definitions of selfadjoint and un...
متن کامل